A Regularization Newton Method for Solving Nonlinear Complementarity Problems
نویسنده
چکیده
In this paper we construct a regularization Newton method for solving the nonlinear complementarity problem (NCP(F)) and analyze its convergence properties under the assumption that F is a P0-function. We prove that every accumulation point of the sequence of iterates is a solution of NCP(F) and that the sequence of iterates is bounded if the solution set of NCP(F) is nonempty and bounded. Moreover, if F is a monotone and Lipschitz continuous function, we prove that the sequence of iterates is bounded if and only if the solution set of NCP(F) is nonempty by setting t = 2 , where t ∈ [ 2 , 1] is a parameter. If NCP(F) has a locally unique solution and satisfies a nonsingularity condition, then the convergence rate is superlinear (quadratic) without strict complementarity conditions. At each step, we only solve a linear system of equations. Numerical results are provided and further applications to other problems are discussed.
منابع مشابه
A regularization semismooth Newton method based on the generalized Fischer-Burmeister function for P0-NCPs
We consider a regularization method for nonlinear complementarity problems with F being a P0-function which replaces the original problem with a sequence of the regularized complementarity problems. In this paper, this sequence of regularized complementarity problems are solved approximately by applying the generalized Newton method for an equivalent augmented system of equations, constructed b...
متن کاملNewton and Quasi-Newton Methods for a Class of Nonsmooth Equations and Related Problems
The paper presents concrete realizations of quasi-Newton methods for solving several standard problems including complementarity problems, special variational inequality problems, and the Karush–Kuhn–Tucker (KKT) system of nonlinear programming. A new approximation idea is introduced in this paper. The Q-superlinear convergence of the Newton method and the quasiNewton method are established und...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملAn interior point potential reduction method for constrained equations
We study the problem of solving a constrained system of nonlinear equations by a combination of the classical damped Newton method for (unconstrained) smooth equations and the recent interior point potential reduction methods for linear programs, linear and nonlin-ear complementarity problems. In general, constrained equations provide a uniied formulation for many mathematical programming probl...
متن کامل